Fungsi Komposisi
 dan Fungsi Invers

Pernahkah kalian menggunakan program Matlab dalam penggambaran grafik? Setiap memasukkan data yang berbeda, maka grafik yang dihasilkan juga berbeda. Program ini menggunakan fungsi tertentu. Dapatkah kalian menentukan fungsi grafik itu jika yang diketahui grafiknya?

Pada pembelajaran ini kalian akan mempelajari fungsi komposisi dan fungsi invers.

Setelah pembelajaran ini diharapkan kalian dapat: menentukan komposisi fungsi dari dua fungsi, serta menentukan invers suatu fungsi.

Peta konsep berikut memudahkan kalian dalam mempelajari seluruh materi pada bab ini.

Dalam bab ini terdapat beberapa kata kunci yang perlu kalian ketahui.

1. Fungsi Komposisi
2. Fungsi Invers
3. Invers Fungsi

Pada kelas X kalian sudah mengenal tentang fungsi. Berikut ini kalian akan pelajari tentang fungsi komposisi dan fungsi invers

A. Aljabar Fungsi

1. Jumlah dan Selisih Dua Fungsi

Apabila f dan g masing-masing adalah fungsi dengan domain berturut-turut D_{f} dan D_{g}, serta peta-peta f dan g ada pada kedua domain tersebut, maka:
a. Jumlah fungsi f dan g, ditulis dengan simbol $f+g$ adalah suatu fungsi: $f+g: x \rightarrow f(x)+g(x)$.
b. Selisih f dan g, ditulis dengan simbol $f-g$ adalah suatu fungsi: $f-g: x \rightarrow f(x)-g(x)$.

Domain dari $f+g$ dan $f-g$ adalah irisan dari D_{f} dan D_{g} yang dinotasikan dengan $\left(D_{f} \cap D_{g}\right)$.

Contoh 3.1

Diketahui f dan g masing-masing fungsi \boldsymbol{R} yang didefinisikan dengan $f(x)=x^{2}$ dan $g(x)=2 x+3$.
Tentukan berikut ini.
a. $f+g$
b. $f-g$
c. Prapeta dari 12 (elemen di domain yang petanya 12) untuk fungsi $f-g$.

Jawab:

a. $\quad f+g: x \rightarrow f(x)+g(x)=x^{2}+(2 x+3)$

$$
=x^{2}+2 x+3
$$

Jadi, $(f+g)(x)=x^{2}+2 x+3$.
b. $\quad f-g: x \rightarrow f(x)-g(x)=x^{2}-(2 x+3)$

$$
=x^{2}-2 x-3
$$

Jadi, $(f-g)(x)=x^{2}-2 x-3$.
c. Prapeta dari 12 untuk fungsi $f-g$ adalah:

$$
\begin{aligned}
&(f-g)(x)=12 \\
& x^{2}-2 x-3=12 \\
& \Leftrightarrow x^{2}-2 x-15=0 \\
& \Leftrightarrow(x+3)(x-5)=0 \\
& \Leftrightarrow x=-3 \text { atau } x=5 \\
& \text { Jadi, prapeta dari } 12 \text { untuk fungsi } f-g \text { adalah } x=-3 \text { atau } x=5 .
\end{aligned}
$$

2. Perkalian Dua Fungsi

Diketahui f dan g masing-masing adalah fungsi yang mempunyai domain D_{f} dan D_{g} dengan peta-peta f dan g ada pada kedua domain tersebut, maka:

Hasil kali f dan g yang ditulis dengan $f \times g$ didefinisikan sebagai $f \times g: x \rightarrow f \times g$.
Domain dari fungsi $f \times g$ adalah $D_{f} \cap D_{g}$.

Contoh 3.2

Diketahui f dan g masing-masing fungsi yang bekerja pada himpunan bilangan real \boldsymbol{R} yang didefinisikan dengan $f(x)=x+$ 2 dan $g(x)=x-3$. Tentukan:
a. rumus fungsi $f \times g \quad$ b. $\quad(f \times g)(2)$

Jawab:
a. $\quad f \times g: x \rightarrow f(x) \times g(x)=(x+2)(x-3)=x^{2}-x-6$ Jadi, $(f \times g)(x)=x^{2}-x-6$
b. $\quad(f \times g)(2)=2^{2}-2-6=-4$
3. Pembagian Dua Fungsi

Misalkan f dan g masing-masing adalah fungsi yang mempunyai domain D_{f} dan domain D_{g} dengan peta-peta f dan g ada pada kedua domain tersebut, maka:

$$
\begin{aligned}
& \text { Hasil bagi } f \text { dan } g \text { yang ditulis dengan } \frac{f}{g} \text { didefinisikan sebagai } \\
& \frac{f}{g}: x \rightarrow \frac{f(x)}{g(x)} \\
& \text { Domain dari } \frac{f}{g} \text { adalah } D_{f} \cap D_{g} \text {, dengan } g(x) \neq 0 \text {. }
\end{aligned}
$$

Contoh 3.3

1. Diketahui f dan g masing-masing fungsi yang bekerja pada himpunan bilangan real \boldsymbol{R} yang didefinisikan dengan $f(x)=2 x+3$ dan $g(x)=x-4$. Tentukanlah berikut ini.
a. Rumus fungsi $\frac{f}{g}$.s
b. Daerah asal dari fungsi $\frac{f}{g}$.

Jawab:

a. $\frac{f}{g}: x \rightarrow \frac{f(x)}{g(x)}=\frac{2 x+3}{x-4}$

Jadi, $\left(\frac{f}{g}\right)(x)=\frac{2 x+3}{x-4}$
b. Daerah asal dari fungsi $\frac{f}{g}$ adalah:

$$
\begin{aligned}
D_{f} \cap D_{g} & =\boldsymbol{R}-\{x \mid x-4=0\} \\
& =\boldsymbol{R}-\{4\} \text { atau }\{x \mid x \in \boldsymbol{R}, x \neq 4\}
\end{aligned}
$$

2. Diketahui fungsi f dan g didefinisikan sebagai:
$f(x)=\{(2,1),(3,4),(5,2),(6,-1)\}$
$g(x)=\{(2,2),(3,-5),(4,2),(5,3)\}$
Tentukan:
a. $f \times g$
b. $\frac{f}{g}$

Jawab:

a. $\quad f \times g: x \rightarrow f(x) \times g(x)$
$x=2$ maka $f(x) \times g(x) \quad=1 \times 2=2$,
$x=3$ maka $f(x) \times g(x)=4 \times(-5)=-20$,
$x=5$ maka $f(x) \times g(x)=2 \times 3=6$.
Jadi, $f \times \mathrm{g}=\{(2,2),(3,-20),(5,6)\}$
b. $\frac{f}{g}=\left\{\left(2, \frac{1}{2}\right),\left(3, \frac{4}{-5}\right),\left(5, \frac{2}{3}\right)\right\}$

Latihan 3.1

Kerjakan soal-soal di bawah ini dengan tepat.

1. Tentukanlah: $f+g, f-g, g-f, f \times g$, dan $\frac{f}{g}$ jika f dan g masing-masing adalah fungsi pada \boldsymbol{R}.
a. $f(x)=\frac{1}{2 x+1} ; x \neq-\frac{1}{2}$ dan $g(x)=\frac{1}{x-3} ; x \neq 3$
b. $f(x)=2 x$ dan $g(x)=\frac{x-3}{2 x-1} ; x \neq-\frac{1}{2}$
c. $f(x)=\frac{x+2}{x-3} ; x \neq 3$ dan $g(x)=x-2$
2. Diketahui fungsi f dan g terdefinisi pada R serta didefinisikan sebagai $f(x)=2 x-1$ dan $g(x)=x+3$, Tentukan berikut ini.
a. Rumus fungsi $f+g, f-g, f \times g$, dan $\frac{f}{g}$.
b. Daerah hasil dari $f \times g$.
c. Daerah asal dari $\frac{f}{g}$.
3. Fungsi pada bilangan real \boldsymbol{R} didefinisikan sebagai $f(x)=\sin x$ dan $g(x)=\cos x$.
a. Tentukan rumus $f+g, f-g, f \times g$, dan $\frac{f}{g}$.
b. Tentukan daerah asal dari $\frac{f}{g}$.
c. Tentukan peta dari $(f+g)\left(\frac{\pi}{4}\right) ;(f-g)\left(\frac{\pi}{2}\right) ;(f \times g)\left(\frac{1}{4} \pi\right) ;$ dan $\left(\frac{f}{g}\right)\left(\frac{\pi}{4}\right)$.
4. Diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dengan $f(x)=\sqrt{x}, x \geq 0$ dan $g(x)=\sqrt{1-x}, x \leq 1$. Tentukan daerah asal (domain) dari $\frac{f}{g}$ dan $\frac{g}{f}$.
5. Fungsi $f(x), g(x)$, dan $h(x)$ didefinisikan sebagai berikut.
$f(x)=\{(3,2),(4,3),(5,5),(6,4)\}$
$g(x)=\{(1,3),(2,4),(3,5),(4,2)\}$
$h(x)=\{(2,3),(4,2),(5,6),(6,3)\}$

Tentukan:

a. $f+g, f+h$, dan $g+h$.
b. $f-g, f-h$, dan $g-h$.
c. $g-f, h-f$, dan $h-g$
d. $f \times g, f \times h$, dan $g \times h$.
e. $\frac{f}{g}, \frac{f}{h}$, dan $\frac{g}{h}$.
f. $\frac{g}{f}, \frac{f}{g}, \frac{h}{g}$.

B. Komposisi Fungsi

Misalkan f adalah fungsi dari A ke B dan g adalah fungsi dari B ke C, seperti Gambar 3.1.

Gambar 3.1 Fungsi fditeruskan fungsi g
Gambar 3.1 menunjukkan bahwa $a \in A$ dipetakan ke $f(a) \in B$ yang merupakan domain dari g, maka kita dapat menentukan peta dari $f(a)$ pada fungsi g, yaitu $g(f(a))$.

Dengan demikian, kita bisa mendapatkan suatu aturan yang mengawankan setiap elemen $a \in A$ dengan tunggal satu elemen $g(f(a)) \in C$. Dengan kata lain, bisa diperoleh suatu fungsi dari A ke C. Fungsi baru ini disebut fungsi komposisi dari f dan g, dan ditulis dengan notasi ($g \circ f$) dibaca " g bundaran f '. Jadi, apabila $f: A \rightarrow B$ dan $g: B \rightarrow C$ maka fungsi komposisi $(g \circ f)$: $A \rightarrow C$ dapat didefinisikan dengan $(g \circ f)(a)=g(f(a))$.

Jika fungsi $f: A \rightarrow B$ dengan $g: B \rightarrow C$ (perhatikan Gambar 3.2), maka fungsi komposisi $g_{\circ} f$ adalah penggandaan fungsi yang mengerjakan f dahulu, kemudian $g(f$ memetakan x ke y dan g memetakan y ke z).

Gambar 3.2 Komposisi fungsi g of
Karena $y=f(x)$ dan $z=g(y)=g(f(x))$ maka fungsi $h: A \rightarrow C$ yang ditentukan oleh rumus: $h(x)=g(f(x))$ baca "gfx" maka h adalah komposisi f dan g yang dinyatakan dengan $h=g \circ f$. Jadi, $h(x)=(g \circ f)(x)=g(f(x))$, untuk semua $x \in A$.

1. Syarat agar Dua Fungsi dapat Dikomposisikan

Jika kita perhatikan definisi dari fungsi komposisi $f_{\circ} g$ maka syarat daerah hasil dari g, yakni R_{g} haruslah menjadi himpunan bagian dari domain f, yaitu: R_{f} merupakan himpunan bagian dari C.

Komposisi fungsi g of f ini dapat diperoleh jika daerah hasil fungsi f merupakan himpunan bagian dari domain g.

Demikian juga agar diperoleh fungsi komposisi $f_{\circ} g$ maka syaratnya daerah hasil dari g yakni R_{g}, haruslah menjadi himpunan bagian dari domain f yaitu: $R_{g} \subset A$.

Gambar $3.3 R_{f}$ himpunan bagian dari domain g

Contoh 3.4

Diberikan fungsi f dan g yang didefinisikan dengan rumus
$f(x)=x+1$ dan $g(x)=\sqrt{x}$.
a. Tentukan domain dan range dari f dan g.
b. Tentukan domain dan range dari $(g \circ f)$ dan $(f \circ g)$

Jawab:

Agar diperoleh g of maka daerah hasil fungsi f harus merupakan himpunan bagian dari domain g.

$$
\begin{aligned}
& g(x)=\sqrt{x} \text { sehingga } D_{g}=\{x \mid x \geq 0, x \in \boldsymbol{R}\} \text { dan } R_{g}=\{x \mid x \in \boldsymbol{R}\} \\
& \begin{aligned}
f(x)=x & +1 \text { sehingga } D_{f}=\{x \mid x \in \boldsymbol{R}\} \text { dan } R_{f}=\{x \mid x \in \boldsymbol{R}\} \\
(g \circ f)(x) & =g(f(x)) \\
& =g(x+1) \\
\quad & =\sqrt{x+1}
\end{aligned}
\end{aligned}
$$

Sehingga domain dari ($g \circ f$) adalah:
$x+1 \geq 0$
$\Leftrightarrow x \geq-1$
Jadi, $D_{(f f g)}=\{x \mid x \geq-1, x \in \boldsymbol{R}\}$
$R_{(f \mathrm{~g})}=\{x \mid x \in \boldsymbol{R}\}$
$(f \circ g)(x)=f(g(x))=f(\sqrt{x})=\sqrt{x}+1=1+\sqrt{x}$
Sehingga $D_{(f \circ g)}$ adalah $x \geq 0$.
Jadi, $D_{(f g \mathrm{~g})}=\{x \mid x \geq 0, x \in \boldsymbol{R}\}$
$R_{(f g g)}=\{x \mid x \in \boldsymbol{R}\}$

2. Menentukan Komposisi Dua Fungsi atau Lebih

Komposisi fungsi dari dua fungsi atau lebih dapat dicari sebagai berikut.

a. Komposisi dari Dua Fungsi

Jika $f: A \rightarrow B$ dan $g: B \rightarrow C$ maka $(g \circ f)(x)=g(f(x))$.

Contoh 3.5

1. Jika fungsi f dan g adalah fungsi yang bekerja pada himpunan bilangan real \boldsymbol{R} yang didefinisikan oleh $f(x)=2 x-1$ dan $g(x)=x^{2}+1$, carilah rumus berikut.
a. $\quad(g \circ f)(x)$
b. $\quad(f \circ g)(x)$

Jawab:
a. $\quad g \circ f: x \rightarrow(g \circ f)(x)=g(f(x))$

$$
\begin{aligned}
& =g(2 x-1) \\
& =(2 x-1)^{2}+1 \\
& =4 x^{2}-4 x+2
\end{aligned}
$$

b. $\quad f \circ g: x \rightarrow(f \circ g)(x)=f(g(x))$

$$
\begin{aligned}
& =f\left(x^{2}+1\right) \\
& =2\left(x^{2}+1\right)-1 \\
& =2 x^{2}+1
\end{aligned}
$$

2. Misalkan $f: A \rightarrow B$ dan $g: B \rightarrow C$ yang didefinisikan dengan diagram pada gambar berikut. Tentukan $\left(g_{\circ} f\right)(a)$, $(g \circ f)(b), \operatorname{dan}(g \circ f)(c)$

Jawab:

Fungsi $(g \circ f): A \rightarrow C$ pada gambar didefinisikan dengan:
$(g \circ f)(a)=g(f(a))=g(x)=t$
$(g \circ f)(b)=g(f(b))=g(z)=s$
$(g \circ f)(c)=g(f(c))=g(y)=r$

Fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh rumus $f(x)=x+2$ dan $g(x)=3 x^{2}$.

b. Komposisi dari Tiga Buah Fungsi

Misalkan $f: A \rightarrow B$ dan $g: B \rightarrow C$ serta $h: C \rightarrow D$ maka:
fungsi komposisi $h \circ g \circ f: x \rightarrow(h \circ g \circ f)(x)=(h \circ g)(f(x))$

$$
=h(g(f(x)))
$$

Contoh 3.6

Jika f, g, dan h fungsi pada \boldsymbol{R} yang ditentukan oleh $f(x)=3 x$, $g(x)=x-2$, dan $h(x)=x^{2}$, tentukan rumus berikut.
a. $\quad(h \circ g \circ f)(x)$
b. $\quad(f \circ g \circ h)(x)$

Jawab:
a. $\quad h \circ g \circ f: x \operatorname{maka}(h \circ g \circ f(x)=h(g(f(x)))=h(g(3 x))$

$$
=h(3 x-2)
$$

$$
=(3 x-2)^{2}
$$

b. $\quad f_{\circ} g \circ h: x \operatorname{maka}(f \circ g \circ h)(x)=f(g(h(x)))=f\left(g\left(x^{2}\right)\right)$

$$
=f\left(x^{2}-2\right)
$$

$$
=3 x^{2}-6
$$

Latihan 3.2

Kerjakan soal-soal di bawah ini dengan tepat.

1. Fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$, dengan \boldsymbol{R} adalah himpunan bilangan real ditentukan oleh $f(x)=2 x-1$ dan $g(x)=x^{2}+3$. Tentukan:
a. $\quad(f \circ g)(x)$
b. $\quad(g \circ f)(x)$
c. $\quad(f \circ f)(x)$
d. $(g \circ g)(x)$
2. Pemetaan berikut adalah pada bilangan real \boldsymbol{R}.

Carilah rumus untuk $(g \circ f)$ dan $(f \circ g)$ dari soal berikut.
a. $f(x)=x+2$ dan $g(x)=x^{2}$
b. $f(x)=x-2$ dan $g(x)=x^{2}+1$
c. $f(x)=2 x+1$ dan $g(x)=x^{2}-1$
d. $f(x)=2 x-3$ dan $g(x)=x^{2}+2$
e. $f(x)=x+3$ dan $g(x)=2 x^{2}-1$
f. $f(x)=x^{2}$ dan $g(x)=2 x^{2}+1$
g. $f(x)=x^{2}+3$ dan $g(x)=\frac{1}{x^{2}+1}$
h. $f(x)=2 x-3$ dan $g(x)=\sin x$
i. $f(x)=x^{2}+1$ dan $g(x)=\tan x$
j. $\quad f(x)=\log \sqrt{x}$ dan $g(x)=x^{2}+1$
3. Pemetaan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $h: \boldsymbol{R} \rightarrow \boldsymbol{R}$, dengan \boldsymbol{R} adalah himpunan bilangan real ditentukan oleh $g(x)=3-2 x$ dan $h(x)=x^{2}+1$.
a. Tentukanlah $(h \circ g)(2)$.
b. Jika $(h \circ g)(x)=2$, tentukanlah x.
4. Pemetaan $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$, dengan \boldsymbol{R} adalah himpunan bilangan real ditentukan oleh $f(x)=2 x-3$ dan $g(x)=x^{2}-1$.
a. Tentukan rumus fungsi komposisi $g \circ f$ dan $f_{\circ} g$.
b. Tentukan daerah asal dan daerah hasil dari $g \circ f$ dan $f_{\circ} g$.
c. Tentukan penyelesaian dari $(g \circ f)(x)=0$ dan $(f \circ g)(x)=3$
5. Pemetaan f, g, dan h terdefinisi pada bilangan real yang didefinisikan dengan $f(x)=x+2, g(x)=2 x-3$, dan $h(x)=x^{2}$.
a. Tentukan rumus fungsi komposisi $(f \circ g \circ h)(x)$ dan $(h \circ g \circ f)(x)$.
b. Carilah x sebagai peta dari $(f \circ g \circ h)(x)=7$ dan $(h \circ g \circ f)(x)=9$.

C. Nilai Fungsi Komposisi

Nilai fungsi komposisi dapat kita tentukan melalui masingmasing fungsi secara berantai. Namun, dapat juga diperoleh dengan menentukan fungsi komposisinya terlebih dahulu baru dicari nilai fungsinya.

Contoh 3.7

Diketahui fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R}, g: \boldsymbol{R} \rightarrow \boldsymbol{R}$, dan $h: \boldsymbol{R} \rightarrow \boldsymbol{R}$ yang didefinisikan dengan $f(x)=2 x+3, g(x)=x-1$, dan $h(x)=x^{2}$. Tentukan:
a. $\quad(g \circ f)(2)$
b. $\quad(f \circ g)(2)$
c. $\quad(h \circ g \circ f)(2)$
d. $(f \circ g \circ h)(2)$

Jawab:

a. $\quad(g \circ f)(2)=g(f(2))$

$$
\begin{aligned}
& =g(2 \times 2+3) \\
& =g(7) \\
& =7-1=6
\end{aligned}
$$

Atau $(g \circ f)(x)$ dicari terlebih dahulu, yaitu:
$(g \circ f)(x)=g(f(x))$
$=g(2 x+3)$
$=(2 x+3)-1=2 x+2$
Jadi, $(g \circ f)(2)=2 \times 2+2=6$
b. $\quad(f \circ g)(2)=f(g(2))$

$$
\begin{aligned}
& =f(2-1)=f(1) \\
& =2 \times 1+3=5
\end{aligned}
$$

Atau $\left(f_{\circ} g\right)(x)$ dicari terlebih dahulu, yaitu: $(f \circ g)(x)=f(g(x))$

$$
\begin{aligned}
& =f(x-1) \\
& =2(x-1)+3 \\
& =2 x+1
\end{aligned}
$$

Jadi, $(f \circ g)(2)=2 \times 2+1=5$
c. $\quad(h \circ g \circ f)(2)$ dapat juga dicari secara langsung, yaitu:
$(h \circ g \circ f)(2)=h(g(f(2)))$

$$
\begin{aligned}
& =h(g(2 \times 2+3))=h(g(7)) \\
& =h(7-1)=h(6) \\
& =6^{2}=36
\end{aligned}
$$

$$
\begin{aligned}
& \quad \begin{aligned}
& \text { Atau }(h \circ g \circ f)(x) \text { dicari terlebih dahulu, yaitu: } \\
&(h \circ g \circ f)(x)=h(g(f(x))) \\
&=h(g(2 x+3)) \\
&=h((2 x+3)-1) \\
&=h(2 x+2) \\
&=(2 x+2)^{2}=4 x^{2}+8 x+4
\end{aligned} \\
& \\
& \text { J. } \quad \begin{aligned}
\text { Jadi, }(h \circ g \circ f)(2)=4 \times 2^{2}+8 \times 2+4=36 .
\end{aligned} \\
& \text { Dengan jalan yang samadapat dicari bahwa: }\left(f_{\circ} g \circ h\right)(2)=9 .
\end{aligned}
$$

Latihan 3.3

Kerjakan soal-soal di bawah ini dengan tepat.

1. Diketahui fungsi $f: A \rightarrow B$ dan $g: B \rightarrow C$ yang ditentukan oleh diagram berikut.

a. Tentukan $(g \circ f)(a),(g \circ f)(b)$, dan $(g \circ f)(c)$.
b. Tentukan daerah asal dan daerah hasil dari $g \circ f$.
2. Diketahui $A=\{1,2,3,4,5\}$, fungsi f dan g pada A yang ditentukan oleh:
$f(x)=\{(1,2),(2,4),(3,3),(4,1),(5,3)\}$ $g(x)=\{(1,4),(2,5),(3,2),(4,4),(5,1)\}$
a Tentukan $(g \circ f)(1),(g \circ f)(4),(f \circ g)(5)$, dan $(f \circ g)(3)$.
b. Tentukan daerah asal dan daerah hasil dari $g \circ f$ dan $f \circ g$.
3. Fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R}, g: \boldsymbol{R} \rightarrow \boldsymbol{R}$, dan $h: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $f(x)=x+1$, $g(x)=2 x-3$, dan $h(x)=x^{2}$.
a. Hitunglah $(h \circ g \circ f)(3)$ dan $(f \circ g \circ h)(3)$.
b. Tentukan rumus fungsi komposisi $(h \circ g \circ f)(x)$ dan $(f \circ g \circ h)(x)$.
4. Diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $f(x)=2 x+3$ dan $g(x)=x^{2}+x-2$, tentukan $(g \circ f)(4)$.
5. Fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R} ; g: \boldsymbol{R} \rightarrow \boldsymbol{R}$, dan $h: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $f(x)=x^{2}$, $g(x)=3-x$, dan $h(x)=5 x-1$.
Tentukan:
a. $\quad(f \circ g \circ h)(5)$
b. $\quad(g \circ f \circ h)(-1)$
c. $\quad(h \circ g \circ f)(10)$
6. Pemetaan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $h: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $g(x)=3-2 x$ dan $h(x)=x^{2}+1$.
a. Tentukan $(h \circ g)(2)$. b. Jika $(h \circ g)(x)=2$, tentukan x.
7. Pemetaan $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $f(x)=2 x-3$ dan $g(x)=x^{2}-1$.
a. Tentukan rumus fungsi komposisi $g \circ f$ dan $f \circ g$.
b. Tentukan daerah asal dan daerah hasil dari $g \circ f \operatorname{dan} f \circ g$.
c. Tentukan penyelesaian dari $(g \circ f)(x)=0$ dan $(f \circ g)(x)=3$.
8. Pemetaan f, g, dan h terdefinisi pada bilangan real yang didefinisikan dengan $f(x)=x+2, g(x)=2 x-3$, dan $h(x)=x^{2}$.
a. Tentukan rumus fungsi komposisi $(f \circ g \circ h)(x)$ dan $(h \circ g \circ f)(x)$.
b. Carilah x sebagai peta dari $(f \circ g \circ h)(x)=7$ dan $(h \circ g \circ f)(x)=9$.

D. Menentukan Komponen Pembentuk Fungsi Komposisi

Salah satu cara untuk menentukan fungsi f jika fungsi g dan fungsi komposisinya ($g \circ f$ atau $f \circ g$) diketahui, adalah dengan menggunakan definisi fungsi komposisi, yaitu $(f \circ g)(x)$ $=f(g(x))$ dan $(g \circ f)(x)=g(f(x))$.

Contoh 3.8

1. Fungsi f dan g terdefinisi pada \boldsymbol{R}, dan diketahui bahwa $g(x)=x+3$.
Tentukan $f(x)$ jika diketahui:
a. $\quad(g \circ f)(x)=3 x-5$
b. $\quad(f \circ g)(x)=x^{2}+6 x$

Jawab:
a. $\quad(g \circ f)(x)=g(f(x))$
$3 x-5=f(x)+3$
Jadi, $f(x)=3 x-8$.
b. $\quad(f \circ g)(x)=f(g(x))$
$x^{2}+6 x=f(x+3)$
$f(x)=(x-3)^{2}+6(x-3)$
Jadi, $f(x)=x^{2}-9$.
2. Jika $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ diketahui $f(x)=2 x-3$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ diketahui $(g \circ f)(x)=4 x^{2}-16 x+18$, tentukan $g(x)$.
Jawab:
$(g \circ f)(x)=4 x^{2}-16 x+18$
$g(f(x))=4 x^{2}-16 x+18$
$g(2 x-3)=4 x^{2}-16 x+18$
Jadi, $g(x)=x^{2}-2 x+3$

Latihan 3.4

Kerjakan soal-soal di bawah ini dengan tepat.

1. Jika fungsi f dan g merupakan fungsi yang bekerja pada himpunan bilangan real R, tentukan $g(x)$ apabila:
a. $f(x)=2 x+3$ dan $(g \circ f)(x)=x-4$
b. $f(x)=2 x+3$ dan $(g \circ f)(x)=x+1$
c. $f(x)=2 x$ dan $(g \circ f)(x)=1-\frac{1}{2 x}$
d. $f(x)=x^{2}+3$ dan $(g \circ f)(x)=x^{2}-2 x+4$
e. $\quad f(x)=\frac{1}{x}$ dan $(g \circ f)(x)=x^{3}-1$
2. Jika fungsi f dan g terdefinisi pada \boldsymbol{R}, tentukanlah fungsi $g(x)$ apabila:
a. $f(x)=x$ dan $(f \circ g)(x)=\sin x$
b. $f(x)=x+3$ dan $(g \circ f)(x)=a^{x+3}$, dengan a konstanta
c. $f(x)=\frac{1}{x}, x \neq 0$ dan $(f \circ g)(x)=\sec x$
3. Tentukan fungsi $f(x)$ pada \boldsymbol{R}, jika:
a. $f(x+2)=x^{2}+4 x$
b. $f(1-2 x)=x^{3}+1$
c. $f\left(1-\frac{1}{x}\right)=\frac{x+1}{x-2}$
d. $f\left(\frac{x}{x-2}\right)=2 x+3$
e. $f(2-3 x)=3 x+4$
4. Jika diketahui fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}, g(x)=x^{2}-3 x+1$ dan $(f \circ g)(x)=2 x^{2}-6 x-1$, maka tentukan $f(x)$.
5. Jika diketahui fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}, g(x)=x+3$ dan $(f \circ g)(x)=x^{2}+11 x+20$, maka tentukan $f(x+1)$.

E. Sifat-sifat Komposisi Fungsi

1. Bersifat asosiatif.

$$
(h \circ g) \circ f(x)=h \circ(g \circ f)(x)
$$

2. Tidak bersifat komutatif.

$$
(f \circ g)(x) \neq(g \circ f)(x)
$$

3. Jika $I=$ fungsi identitas, maka

$$
f_{\circ} I=I \circ f=f
$$

4. Jika $(f \circ g)(x)=(g \circ f)(x)=I$ maka f adalah invers dari g atau sebaliknya. (bukti akan dibahas di belakang)
Untuk membuktikan atau menunjukkan kebenaran, perhatikan contoh berikut.

Contoh 3.9

1. Diketahui $h: x \rightarrow 2 x-3, g: x \rightarrow 5-x$, dan $f: x \rightarrow x^{2}$. Tentukan:
a. $\quad(h \circ g) \circ f(x)$
b. $\quad h \circ(g \circ f)(x)$
c. Tunjukkan bahwa $(h \circ g) \circ f(x)=h \circ(g \circ f)(x)$.

Jawab:

a. $\quad(h \circ g) \circ f(x)=(h \circ g)\left(x^{2}\right)$

$$
=h\left(g\left(x^{2}\right)\right)
$$

$$
=h\left(5-x^{2}\right)
$$

$$
=2\left(5-x^{2}\right)-3
$$

$$
=7-2 x^{2}
$$

$$
\text { Jadi, }(h \circ g) \circ f(x)=7-2 x^{2}
$$

b. $\quad h \circ(g \circ f)(x)=h((g \circ f)(x))$

$$
\begin{aligned}
& =h\left(g\left(x^{2}\right)\right) \\
& =h\left(5-x^{2}\right) \\
& =2\left(5-x^{2}\right)-3=7-2 x^{2}
\end{aligned}
$$

Jadi, $h \circ(g \circ f)(x)=7-2 x^{2}$
c. Dari jawaban (a) dan (b) diperoleh bahwa: $(h \circ g) \circ f(x)=h \circ(g \circ f)(x)$.
2. Tentukan:
a. $f_{\mathrm{o}} I$
b. $\quad I \circ f$
c. Tunjukkan $f \circ I=I \circ f=f$ ($I: x \rightarrow x$)

Jawab:

a. $\quad f \circ I=f(I)=f(x)=x^{2}$
b. $\quad I \circ f=I\left(x^{2}\right)=x^{2}$
c. Tampak $f \circ I=I \circ f=f$

F. Fungsi Invers

1. Pengertian Invers suatu Fungsi

Jika I adalah fungsi identitas $I: x \rightarrow x$ dan untuk suatu fungsi f terdapat fungsi g sedemikian hingga $g \circ f=f_{\circ} g=I$ maka g disebut fungsi invers dari f, dan ditulis $g=f^{-1}$. Jadi, $f_{\circ} f^{-1}=$ $f^{-1} \circ f: x \rightarrow x$.

Contoh 3.10

Diketahui f dan g fungsi pada bilangan real \boldsymbol{R} yang didefinisikan dengan $f(x)=2 x+3$ dan $g(x)=\frac{1}{2}(x-3)$. Tunjukkan bahwa jika f adalah fungsi invers dari g maka g adalah fungsi invers dari f.

Jawab:

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =f\left(\frac{1}{2}(x-3)\right) \\
& =2\left(\frac{1}{2}(x-3)\right)+3 \\
& =(x-3)+3=x=I(x)
\end{aligned}
$$

$$
\begin{aligned}
(g \circ f)(x)=g(f(x))=g(2 x+3) & =\frac{1}{2}((2 x+3)-3) \\
& =\frac{1}{2}(2 x)=x=I(x)
\end{aligned}
$$

Terlihat bahwa $f \circ g=g \circ f=I$.
Jadi, f adalah fungsi invers dari g dan g fungsi invers dari f.

2. Menentukan Rumus Fungsi Invers

Rumus fungsi invers dapat ditentukan, yaitu jika untuk suatu fungsi f dan f^{-1} merupakan fungsi maka:
$f(x)=y \Leftrightarrow f^{-1}(y)=x$, seperti Gambar 3.4.
Kita dapat mencari rumus fungsi invers dari korespondensi tersebut.

Gambar $3.4 f(x) \operatorname{dan}^{1}(x)$

Contoh 3.11

1. Diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dengan \boldsymbol{R} adalah himpunan bilangan real didefinisikan dengan $f(x)=3 x+7$. Tentukan rumus fungsi invers f^{-1}.
Jawab:
Misalkan $f(x)=y$
$\Leftrightarrow 3 x+7 \quad=y$
$\Leftrightarrow \quad 3 x \quad=y-7$
$\Leftrightarrow \quad x \quad=\frac{1}{3}(y-7)$
$\Leftrightarrow f^{-1}(y)=\frac{1}{3}(y-7)$
Dengan demikian rumus fungsi inversnya adalah $f^{-1}(x)$
$=\frac{1}{3}(x-7)$.
2. Diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dengan \boldsymbol{R} adalah himpunan bilangan real yang didefinisikan dengan $f(x)=\frac{x-3}{2 x+1}, x \neq-\frac{1}{2}$. Tentukan rumus f^{-1}.

Jawab:

Misalkan $f(x)=y$

$$
\begin{aligned}
& \frac{x-3}{2 x+1}=y, x \neq-\frac{1}{2} \\
& \Leftrightarrow \quad x-3=y(2 x+1) \\
& \Leftrightarrow \quad(x-3)=2 x y+y \\
& \Leftrightarrow \quad x-2 x y= \\
& \Leftrightarrow x(1-2 y)=y+3 \\
& \Leftrightarrow \quad x=\frac{y+3}{1-2 y} \\
& \Leftrightarrow \quad r^{-1}(y)=\frac{y+3}{1-2 y}
\end{aligned}
$$

Jadi, rumus fungsi inversnya adalah $f^{-1}(x)=\frac{x+3}{1-2 x}, x \neq \frac{1}{2}$.

Latihan 3.5

Kerjakan soal-soal di bawah ini dengan tepat.

1. Diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$, carilah rumus untuk invers dari fungsi f berikut ini.

Kesimpulan apa yang kalian peroleh?
a. $f(x)=x$
b. $f(x)=2 x-5$
c. $f(x)=4 x+3$
d. $f(x)=3 x-4$
e. $f(x)=3-\frac{2}{5} x$
f. $\quad f(x)=\frac{1}{3}(4 x-5)$
g. $f(x)=\frac{1}{2}(3-2 x)$
h. $f(x)=x^{3}$
i. $\quad f(x)=x^{3}-8$
j. $\quad f(x)=(x-1)^{3}$
2. Diketahui domain $A=\{x \mid x>0, x \in \boldsymbol{R}\}$ serta fungsi f, g, dan h pada A didefinisikan sebagai $f(x)=2 x+3, g(x)=3 x$, dan $h(x)=x^{2}$.
a. Tentukan rumus untuk f^{-1}, g^{-1}, dan h^{-1}.
b. Hitunglah $f^{-1}(7), g^{-1}(6)$, dan $h^{-1}(4)$.
3. Pemetaan $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $f(x)=x^{3}-4$ dan $g(x)=2 x+3$.

Carilah:

a. $\quad f^{-1}(4)$
b. $\quad g^{-1}(5)$
c. $\quad\left(f^{-1} \circ g^{-1}\right)(-3)$
d. $\left(g^{-1} \circ f^{-1}\right)(1)$
4. Carilah rumus f^{-1}, kemudian tentukan domain dan kodomainnya untuk f pada setiap soal berikut.
a. $f(x)=\sqrt{2 x-3}$
b. $f(x)=2 \sqrt{x}-3$
c. $f(x)=\sqrt{x^{2}-4}$
d. $f(x)=-\frac{x}{x+3}$
e. $f(x)=\frac{2}{5-2 x}$
f. $f(x)=x^{2}+2 x$
g. $f(x)=x^{2}+6 x+5$
5. Selidiki apakah pasangan fungsi di bawah ini, yang satu merupakan invers dari fungsi yang lain?
a. $f(x)=x+1 ; g(x)=x-1$
b. $f(x)=x+3 ; g(x)=x-3$
c. $f(x)=2 x ; g(x)=\frac{1}{2} x$
d. $f(x)=2 x+4 ; g(x)=x-2$

3. Syarat agar Invers suatu Fungsi merupakan Fungsi (Fungsi Invers)

Jika $f: A \rightarrow B$ yang memetakan $f: a \rightarrow a^{\prime}$ maka invers dari f ${ }^{-1}: a^{\prime} \rightarrow a$. Sehingga $f^{-1}: B \rightarrow A$, relasi $f^{-1}: B \rightarrow \mathrm{~A}$ ini dinamakan invers fungsi f, dan jika relasi f^{-1} tersebut memenuhi syarat suatu fungsi maka f^{-1} disebut fungsi invers.

Perhatikan kembali bahwa domain f^{-1} merupakan range dari f, dan f^{-1} harus memenuhi suatu syarat fungsi, yaitu setiap elemen a^{\prime} dari B harus mempunyai kawan tepat satu elemen $a \in A$. Hal ini hanya terjadi jika f adalah suatu korespondensi satu-satu.

Gambar 3.5 Invers fungsif

Jadi, syarat agar invers suatu fungsi merupakan fungsi, maka f adalah suatu fungsi yang bijektif (atau f korespondensi satusatu).

Contoh 3.12

a. Fungsi $f: x \rightarrow 2 x+3$ mempunyai fungsi invers f^{-1} karena fungsi linear f ini suatu fungsi yang bijektif.
b. Fungsi $f: x \rightarrow x^{2}-4$, inversnya bukan merupakan fungsi untuk domain seluruh bilangan real karena fungsi kuadrat $f(x)=x^{2}-4$ bukan merupakan korespondensi satu-satu.
4. Menentukan Domain dan Kodomain suatu Fungsi yang Diketahui agar Fungsi tersebut Mempunyai Fungsi Invers
Syarat bahwa suatu fungsi f mempunyai invers f^{-1} adalah f merupakan suatu fungsi korespondensi satu-satu. Hal tersebut telah kita pelajari di atas. Dengan demikian domain dan kodomain dari fungsi agar diperoleh suatu invers dapat ditentukan.

Contoh 3.13

Suatu fungsi f pada himpunan bilangan real ditentukan oleh
$f(x)=\frac{x-4}{2 x+3}$. Tentukan domain dan range f agar diperoleh fungsi invers f^{-1}.

Jawab:

Dengan memperhatikan definisi suatu fungsi maka domain dari f adalah $D_{f}=\{x \mid 2 x+3 \neq 0, x \in \boldsymbol{R}\}$

$$
=\left\{x \left\lvert\, x \neq \frac{-3}{2}\right., x \in R\right\} .
$$

Kita dapat menentukan dengan terlebih dahulu mencari rumus fungsi inversnya.

Misalkan $f(x)=y$

$$
\begin{array}{llrl}
& \Leftrightarrow & \frac{x-4}{2 x+3} & =y \\
& \Leftrightarrow & x-4 & =2 x y+3 y \\
& \Leftrightarrow & x(1-2 y) & =3 y+4 \\
& \Leftrightarrow & x & =\frac{3 y+4}{1-2 y} \\
& \Leftrightarrow & f^{-1}(y) & =\frac{3 y+4}{1-2 y}
\end{array}
$$

Jadi, rumus inversnya adalah $f^{-1}(x)=\frac{3 x+4}{1-2 x}$
Dengan memperhatikan range dari f adalah domain dari f^{-1} maka:

$$
\begin{aligned}
R_{f}=D_{f^{-1}} & =\{x \mid 1-2 x \neq 0, x \in \boldsymbol{R}\} \text { atau }\{y \mid 1-2 y \neq 0, y \in \boldsymbol{R}\} \\
& =\left\{x \left\lvert\, x \neq \frac{1}{2}\right., x \in \boldsymbol{R}\right\} \text { atau }\left\{y \left\lvert\, y \neq \frac{1}{2}\right., y \in \boldsymbol{R}\right\}
\end{aligned}
$$

5. Fungsi Invers dari Fungsi Komposisi
a. Pengertian Fungsi Invers dari Fungsi Komposisi

Misalkan fungsi h merupakan fungsi komposisi dari fungsi f dan $g\left(h=g_{\circ} f\right)$, maka invers dari fungsi h adalah fungsi invers dari fungsi komposisi h dan biasa ditulis dengan notasi $h^{-1}=(g \circ f)^{-1}$.

Contoh 3.14

Diketahui $h=g \circ f$ dengan g dan f masing-masing fungsi pada \boldsymbol{R} yang ditentukan oleh $f(x)=2 x$ dan $h(x)=x+3$. Tentukan rumus invers dari fungsi h jika $h(x)=(g \circ f)(x)=2 x+3$.

Jawab:

Fungsi invers dari fungsi h dicari sebagai berikut.
$h(x)=(g \circ f)(x)=g(f(x))=g(2 x)=2 x+3$

Misalkan $h(x)=y$
$2 x+3=y$
$\Leftrightarrow \quad 2 x=y-3$
$\Leftrightarrow \quad x=\frac{1}{2}(y-3)$
$\Leftrightarrow \quad h^{-1}(y)=\frac{1}{2}(y-3)$
Sehingga, $h^{-1}(x)=\frac{1}{2}(x-3)$
Jadi, $(g \circ f)^{-1}(x)=\frac{1}{2}(x-3)$.

b. Menentukan Fungsi Invers dari Fungsi Komposisi

Fungsi invers $(g \circ f)^{-1}$ dan fungsi komposisi $g \circ f$ dapat kita tentukan jika masing-masing fungsi f dan g diketahui. Langkah-langkah yang dapat ditempuh adalah sebagai berikut.

1) Tentukan terlebih dahulu fungsi komposisi $g_{\circ} f$.
2) Tentukan fungsi inversnya berdasar hasil fungsi komposisi di atas.

Contoh 3.15

Diketahui f dan g masing-masing fungsi pada R yang didefinisikan dengan $f(x)=x+3$ dan $g(x)=2 x-1$. Tentukan:
a. $\quad(g \circ f)^{-1}$
b. $\left(f_{\circ} g\right)^{-1}$

Jawab:
a. Menentukan $(g \circ f)^{-1}$
$(g \circ f)(x)=g(f(x))$

$$
=(g(x+3))
$$

$$
=2(x+3)-1
$$

$$
=2 x+5
$$

Misalkan $(g \circ f)(x)=y$
$\Leftrightarrow \quad 2 x+5=y$
$\Leftrightarrow \quad 2 x=y-5$
$\Leftrightarrow \quad x=\frac{1}{2}(y-5)$
$\Leftrightarrow \quad(g \circ f)^{-1}(y)=\frac{1}{2}(y-5)$
Jadi, $\quad(g \circ f)^{-1}(x)=\frac{1}{2}(x-5)$.
b. Menentukan $\left(f_{\circ} g\right)^{-1}$

$$
(f \circ g)(x)=f(g(x))
$$

$$
=f(2 x-1)
$$

$$
=(2 x-1)+3
$$

$$
=2 x+2
$$

$$
\operatorname{Misalkan}\left(f_{\circ} g\right)(x)=y
$$

$$
\Leftrightarrow \quad 2 x+2=y
$$

$$
\Leftrightarrow \quad 2 x=y-2
$$

$$
\Leftrightarrow \quad x=\frac{1}{2}(y-2)
$$

$$
\Leftrightarrow \quad(f \circ g)^{-1}(y)=\frac{1}{2}(y-2)
$$

Jadi, $(f \circ g)^{-1}(x)=\frac{1}{2}(x-2)$.

Latihan 3.6

Kerjakan soal-soal di bawah ini dengan tepat.

1. Diketahui \boldsymbol{R} merupakan himpunan bilangan real, $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ didefinisikan dengan $f(x)=2+x$ dan $g(x)=3 x-1$. Tentukan:
a. $\quad(g \circ f)^{-1}(x)$
b. $\quad(f \circ g)^{-1}(x)$
2. Diketahui \boldsymbol{R} merupakan himpunan bilangan real dan diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ serta $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ didefinisikan dengan $f(x)=5 x+2$ dan $g(x)=6-7 x$. Tentukan:
a. $\quad\left(f^{-1} \circ g\right)(x)$
b. $\quad\left(g \circ f^{-1}\right)(x)$
c. $(f \circ g)^{-1}(x)$
3. Diketahui $f(x)=\frac{2 x+1}{x-3} ; x \neq 3$. Tentukan:
a. $\quad f^{-1}(x+1)$
b. $\quad\left(f^{-1} \circ f\right)(x+1)$
4. Jika \boldsymbol{R} merupakan himpunan bilangan real dan diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ serta $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $f(x)=x^{3}$ dan $g(x)=3 x-4$, tentukan $\left(g^{-1} \circ f^{-1}\right)(8)$.
5. Diketahui $f(x)=7 x+1$ dan $g(x)=\frac{1}{2} x-5$. Tentukan $\left(f_{\circ} g\right)^{-1}(x)$ untuk $x=-4$.
6. Diketahui $f(x)=\frac{1}{x-1}, g^{-1}(x)=\frac{1-x}{x}$, dan $h(x)=g((f(x))$. Tentukan $h^{-1}(x)$.
7. $f(x)=x+2$ untuk $x>0$ dan $g(x)=\frac{15}{x} ; x \neq 0$ dan $x>0$. Jika $\left(f^{-1} \circ g^{-1}\right)(x)=1$, tentukan x.
8. Diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ didefinisikan dengan $g(x)=x^{2}-x+$ 3 dan $(f \circ g)(x)=3 x^{2}-3 x+4$. Tentukan $f^{-1}(x-2)$.
9. Diketahui $f(x)=x^{2}-3 x+5, g(x)=x+2$, dan $(f \circ g)^{-1}(x)=15$. Tentukan x.
10. Diketahui $f(x)=5^{x}$ dan $g(x)=x^{2}+3$ untuk $x \neq 0$. Tentukan $f^{-1}\left(g\left(x^{2}\right)-3\right)$.

G. Menggambar Grafik Fungsi Invers dari Grafik Fungsi Asalnya

Contoh 3.16

Diketahui $f(x)=x+2$.
Tentukan berikut ini.
a. $\quad f^{-1}(x)$.
b. Gambar grafik $f(x)$.
c. Gambar grafik $f^{-1}(x)$.
d. Tentukan hubungan antara grafik $f(x)$ dan $f^{-1}(x)$.

Jawab:

a. $\quad f(x)=x+2$

Misalkan $x+2=y$
$\Leftrightarrow x=y-2$
$\Leftrightarrow f^{-1}(y)=y-2$
$\Leftrightarrow f^{-1}(x)=x-2$
Jadi, $f^{-1}(x)=x-2$.

b. Grafik $f(x)$
c. $\quad \ldots \ldots f^{-1}(x)$
d. Grafik $f(x)$ dan $f^{-1}(x)$

Hubungan antara grafik $f(x)$ dan $f^{-1}(x)$ adalah saling simetris terhadap garis $y=x$.

Latihan 3.7

Kerjakan soal-soal di bawah ini dengan tepat.

Gambarkan grafik $f(x)$ dan $f^{-1}(x)$ jika diketahui berikut ini.

1. $f(x)=2 x+3$
2. $f(x)=5-x$
3. $f(x)=\frac{1}{2} x+2$
4. $f(x)=x^{2}$
5. $f(x)=x^{2}-x$

H. Sifat Fungsi Invers Dikaitkan dengan Fungsi Komposisi

1. Sifat Fungsi Invers dari Fungsi Komposisi

Jika $f^{-1}(x)$ invers dari $f(x)$ dan $g^{-1}(x)$ invers dari $g(x)$ maka:

$$
\begin{aligned}
& (f \circ g)^{-1}(x)=\left(g^{-1} \circ f^{-1}\right)(x) \\
& (g \circ f)^{-1}(x)=\left(f^{-1} \circ g^{-1}\right)(x) \\
& \left(f^{-1}(x)\right)^{-1}=f(x) \\
& \left(f \circ f^{-1}\right)(x)=I
\end{aligned}
$$

Contoh 3.17

Diketahui fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ didefinisikan dengan $f(x)=2 x$ dan $g(x)=x+2$. Tentukan berikut ini.
a. f^{-1} dan g^{-1}
b. $(f \circ g)^{-1}$ dan $(g \circ f)^{-1}$
c. $\quad g^{-1} \circ f^{-1} \operatorname{dan} f^{-1} \circ g^{-1}$
d. $\quad\left(f^{-1}\right)^{-1}(x)$ dan $\left(g^{-1}\right)^{-1}(x)$
e. $\quad\left(f \circ f^{-1}\right)(x)$ dan $\left(g \circ g^{-1}\right)(x)$
f. Tunjukkan kesamaan-kesamaan dari fungsi inversnya.

Jawab:
a. \quad Misalkan $f(x)=y$,
$y=2 x$
maka $x=\frac{1}{2} y$
$f^{-1}(y)=\frac{1}{2} y$ sehingga $f^{-1}(x)=\frac{1}{2} x$
Kemudian, misalkan $g(x)=x+2=y$ maka $x=y-2$ $g^{-1}(y)=y-2$ sehingga $g^{-1}(x)=x-2$.
b. $\quad(g \circ f)(x)=g(f(x))=g(2 x)=2 x+2$

Misalkan $(g \circ f)(x)=2 x+2=y$,
maka $2 x=y-2$

$$
x=\frac{1}{2}(y-2)
$$

$(g \circ f)^{-1}(y)=\frac{1}{2}(y-2)$ sehingga $(g \circ f)^{-1}(x)=\frac{1}{2}(x-2)$
$(f \circ g)(x)=f(g(x))=f(x+2)=2(x+2)=2 x+4$
Misalkan $\left(f_{\circ} g\right)(x)=2 x+4=y$,
maka $2 x=y-4$

$$
x=\frac{1}{2}(y-4)
$$

$(f \circ g)^{-1}(y)=\frac{1}{2}(y-4)$ sehingga $(f \circ g)^{-1}(x)=\frac{1}{2}(x-4)$.
c. $\quad\left(g^{-1} \circ f^{-1}\right)(x)=g^{-1}\left(f^{-1}(x)\right)$

$$
\begin{aligned}
& =g^{-1}\left(\frac{1}{2} x\right) \\
& =\frac{1}{2} x-2=\frac{1}{2}(x-4) \\
\left(f^{-1} \circ g^{-1}\right)(x) & =f^{-1}\left(g^{-1}(x)\right) \\
& =f^{-1}(x-2) \\
& =\frac{1}{2}(x-2)
\end{aligned}
$$

d. $\left(f^{-1}\right)^{-1}(x)$ ditentukan sebagai berikut.

Misalkan $\left(f^{-1}\right)(x)=y$,
maka $\frac{1}{2} x=y$
$x=2 y$
$\left(f^{-1}\right)^{-1}(y)=2 y$
$\left(f^{-1}\right)^{-1}(x)=2 x$
Misalkan $\left(g^{-1}\right)(x)=y$,

$$
\begin{aligned}
\text { maka } x-2 & =y \\
x & =y+2 \\
\left(g^{-1}\right)^{-1}(y) & =y+2 \\
\left(g^{-1}\right)^{-1}(x) & =x+2
\end{aligned}
$$

e. $\quad\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right) \quad\left(g \circ g^{-1}\right)(x)=g\left(g^{-1}(x)\right)$

$$
\begin{array}{ll}
=f\left(\frac{1}{2} x\right) & =g(x-2) \\
=2\left(\frac{1}{2} x\right) & =(x-2)+2 \\
=x & =x
\end{array}
$$

f. Dari uraian di atas diperoleh:

1) $(g \circ f)^{-1}(x)=\left(f^{-1} \circ g^{-1}\right)(x)$
2) $(f \circ g)^{-1}(x)=\left(g^{-1} \circ f^{-1}\right)(x)$
3) $\left(f^{-1}\right)^{-1}(x)=f(x)$ dan $\left(g^{-1}\right)^{-1}(x)=g(x)$
4) $\left(f \circ f^{-1}\right)(x)=I$ dan $\left(g \circ g^{-1}\right)(x)=I$
2. Menentukan Fungsi Invers dengan Menggunakan Sifat $(f \circ g)^{-1}(x)=\left(g^{-1} \circ f^{-1}\right)(x)$

Selain dengan mencari $g \circ f$ dan $f \circ g$ terlebih dahulu untuk menentukan $(g \circ f)^{-1}$ atau $(f \circ g)^{-1}$, kedua fungsi invers dari fungsi komposisi ini dapat dicari dari kesamaan fungsi yaitu: $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$ dan $(g \circ f)^{-1}=$ $f^{-1} \circ g^{-1}$.

Contoh 3.18

Diketahui f dan g fungsi-fungsi yang bekerja pada himpunan bilangan real R yang ditentukan oleh $f(x)=2 x-3$ dan $g(x)=x$. Tentukan:
a. $\quad f^{-1}$
b. g^{-1}
c. $\quad(g \circ f)^{-1}$
d. $(f \circ g)^{-1}$

Jawab:

a. Misalkan $f(x)=2 x-3=y$

$$
\Leftrightarrow \quad 2 x=y+3
$$

$$
\Leftrightarrow \quad x=\frac{1}{2}(y+3)
$$

$$
\Leftrightarrow f^{-1}(y)=\frac{1}{2}(y+3)
$$

Jadi, $f^{-1}(x)=\frac{1}{2}(x+3)$
b. Misalkan $g(x)=x^{3}=y$

$$
\begin{aligned}
& \Leftrightarrow=\sqrt[3]{y} \\
& \Leftrightarrow g^{-1}(y)=\sqrt[3]{y} \\
& \text { Jadi, } g^{-1}(x)= \sqrt[3]{x} \\
&(g \circ f)^{-1}=f^{-1} \circ g^{-1}: x \\
&\left(f^{-1} \circ g^{-1}\right)(x)=f^{-1}\left(g^{-1}(x)\right) \\
&=f^{1}(\sqrt[3]{x}) \\
&=\frac{1}{2}(\sqrt[3]{x}+3) \\
&=\frac{3}{2}+\frac{1}{2} \sqrt[3]{x} \\
&\left(f_{\circ} g\right)^{-1}=\left(g^{-1} \circ f^{-1}\right): x \\
&\left(g^{-1} \circ f^{-1}\right)(x)=g^{-1}\left(f^{-1}(x)\right) \\
&=g^{-1}\left(\frac{1}{2}(x+3)\right) \\
&=\sqrt[3]{\frac{1}{2}(x+3)} \\
&=\frac{1}{2} \sqrt[3]{4(x+3)}
\end{aligned}
$$

c.

3. Beberapa Penerapan

Berdasarkan sifat-sifat fungsi invers, dapat dicari fungsi f jika fungsi g dan $g \circ f$ atau $f \circ g$ diketahui.

Contoh 3.19

1. Fungsi f dan g terdefinisi pada \boldsymbol{R}, dan diketahui pula $g(x)=x+3$.
Tentukan $f(x)$ jika diketahui berikut ini.
a. $\quad(g \circ f)(x)=3 x-5$
b. $\quad(f \circ g)(x)=x^{2}+6 x$

Jawab:

a. Pertama dicari fungsi invers g^{-1}

Misalkan $g(x)=x+3=y$

$$
\begin{aligned}
& \Leftrightarrow \quad x=y-3 \\
& \Leftrightarrow g^{-1}(y)=y-3 \text { sehingga } g^{-1}(x)=x-3 \\
& \text { Dengan memperhatikan: } \\
& \begin{aligned}
f(x) & =\left(g^{-1} \circ(g \circ f)\right)(x) \\
& =g^{-1}((g \circ f)(x)) \\
& =(3 x-5)-3 \\
& =3 x-8
\end{aligned}
\end{aligned}
$$

Atau dengan cara lain:
$(g \circ f)(x)=3 x-5$
$(g(f(x))=3 x-5$
$f(x)+3=3 x-5$
$f(x)=3 x-8$
b. Demikian juga:
$(f \circ g) \circ g^{-1}=f \circ\left(g \circ g^{-1}\right)$ $=f$ o I
Ini berarti:

$$
\begin{aligned}
f(x)=\left((f \circ g) \circ g^{-1}\right)(x) & =(f \circ g)\left(g^{-1}(x)\right) \\
& =(f \circ g)(x-3) \\
& =(x-3)^{2}+6(x-3) \\
& =x^{2}-9
\end{aligned}
$$

Atau dengan cara lain:
Misalkan $a=g(x)=x+3 \Leftrightarrow x=a-3$

$$
\begin{aligned}
1\left(f_{\circ} g\right)(x) & =x^{2}+6 x \\
f(g(x)) & =x^{2}+6 x \\
f(a) & =(a-3)^{2}+6(a-3) \\
& =a^{2}-9
\end{aligned}
$$

Dengan demikian, $f(x)=x^{2}-9$.
2. Tentukan fungsi $f(x)$ pada \boldsymbol{R} sedemikian hingga
$f\left(1-\frac{1}{x}\right)=\frac{x-1}{2 x+3}, x \neq-\frac{3}{2}$.
Jawab:
Misalkan $1-\frac{1}{x}=y$
$\Leftrightarrow \frac{1}{x}=1-y$
$\Leftrightarrow x=\frac{1}{1-y}$

$$
\begin{aligned}
& \text { Sehingga, } f(y)=\frac{\frac{1}{1-y}-1}{2\left(\frac{1}{1-y}\right)+3}=\frac{1-(1-y)}{2+3(1-y)}=\frac{y}{5-3 y} \\
& \text { Jadi, } f(x)=\frac{x}{5-3 x}, x \neq \frac{5}{3} .
\end{aligned}
$$

Latihan 3.8

Kerjakan soal-soal di bawah ini dengan tepat.

1. Diketahui fungsi f dan g terdefinisi pada \boldsymbol{R} dan didefinisikan dengan $f(x)=2 x+3$ dan $g(x)=1-3 x$.
a. Tulislah rumus untuk f^{-1} dan g^{-1}.
b. Carilah $(g \circ f)^{-1}$ dan $(f \circ g)^{-1}$.
2. Fungsi f dan g pada \boldsymbol{R} didefinisikan dengan $f(x)=x-3$ dan $g(x)=\frac{x-3}{x+4}, x \neq-4$.
a. Tulislah rumus untuk f^{-1} dan g^{-1}.
b. Tentukan fungsi invers $(g \circ f)^{-1},(f \circ g)^{-1}$, dan domain-domainnya.
3. Fungsi f dan g pada bilangan real didefinisikan dengan $f(x)=\frac{1}{1-x}$ dan $g(x)=1-\frac{1}{1-x}$.
Tentukan:
a. f^{-1} dan g^{-1}.
b. $(g \circ f)^{-1}$ dan $(f \circ g)^{-1}$.
c. Berdasarkan ketentuan fungsi, tentukan daerah asal dari $f, g, f \circ g$, dan g of.
4. Diketahui f dan g fungsi pada \boldsymbol{R} yang didefinisikan dengan $f(x)=x$ dan $g(x)=-\frac{1}{x}, x \neq 0$.
Tentukan:
a. f^{-1} dan g^{-1}.
b. $\quad(g \circ f)^{-1}$ dan $(f \circ g)^{-1}$.
5. Diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $f(2 x-1)=4-3 x$ dan $g(x)=x^{2}$. Tentukan:
a. $f^{-1}(x)$
b. $g^{-1}(x)$
c. $(f \circ g)^{-1}$
6. a. Diketahui $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $h: \boldsymbol{R} \rightarrow \boldsymbol{R}$, dan ditentukan oleh $g^{-1}(x)=\frac{3-2 x}{x-1}, h(x)=x-1$. Tentukan $\left(h^{-1} \circ g\right)(2)$.
b. Diketahui $h: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $h^{-1}(x-1)=\sqrt{x}$, $f^{-1}(1-2 x)=4-3 x$. Tentukan $(h \circ g)(4)$.

Rangkuman

1. Suatu fungsi atau pemetaan dari himpunan A ke himpunan B ialah suatu relasi khusus, yang setiap elemen dari A dikawankan dengan tepat satu elemen di B.
Himpunan A disebut domain (daerah asal).
Himpunan B disebut kodomain (daerah
 kawan).
Himpunan semua peta di B disebut daerah hasil (range).
$f(a)$ disebut peta (image, bayangan) dari a.
a disebut prapeta (praimage, prabayangan) dari $f(a)$.
2. Untuk fungsi-fungsi pada bilangan real dikenal beberapa fungsi khusus, antara lain sebagai berikut.
a. Fungsi konstan
d. Fungsi modulus
b. Fungsi identitas
e. Fungsi linear
c. Fungsi tangga
f. Fungsi kuadrat
3. Dikenal sifat-sifat fungsi istimewa, yaitu sebagai berikut.
a. Suatu fungsi dikatakan fungsi, $f: A \rightarrow B$ jika untuk setiap dua elemen yang berlainan $a \neq a^{\prime}$ di A diperoleh $f(a) \neq f\left(a^{\prime}\right)$.

b. Suatu fungsi dikatakan fungsi surjektif (fungsi on to) $f: A \rightarrow B$ jika setiap elemen $y \in B$, diperoleh $x \in A$ sedemikian hingga $y=f(x)$.

c. Suatu fungsi f dikatakan bijektif (korespondensi satu-satu) jika f injektif dan surjektif sekaligus.
4. Aljabar Fungsi

a. Jumlah dua fungsi $f+g: x \rightarrow f(x)+g(x)$
b. Selisih dua fungsi $f-g: x \rightarrow f(x)-g(x)$
c. Perkalian dua fungsi $f \times g: x \rightarrow f(x) \times g(x)$
d. Pembagian dua fungsi $\frac{f}{g}: x \rightarrow \frac{f(x)}{g(x)}$
5. Komposisi Fungsi

Jika f dan g ialah fungsi sehingga $f: A \rightarrow B$ dan $g: B \rightarrow C$ maka fungsi komposisi $g \circ f: A \rightarrow C$ yang ditentukan oleh rumus $(g \circ f)(x)=g(f(x))$, $x \in A$.

6. Sifat-sifat Komposisi Fungsi
a. Komposisi fungsi tidak komutatif, yaitu: $g \circ f \neq f \circ g$
b. Komposisi fungsi bersifat asosiatif, yaitu:

$$
h \circ g \circ f=(h \circ g) \circ f=h \circ(g \circ f)
$$

7. Fungsi Invers

Suatu fungsi $f: A \rightarrow B$ mempunyai fungsi invers $f^{-1}: B \rightarrow A$, jika f suatu fungsi yang bijektif (A dan B berada dalam korespondensi satu-satu) dan dipenuhi: $f^{-1}(y)=x \Leftrightarrow f(x)=y$

Tugas Kelompok

1. Jika $f(x)=\frac{a x+b}{c x+d}, x \neq-\frac{d}{c}$, tentukan rumus untuk $f^{-1}(x)$.
2. Kemudian, gunakan rumus tersebut untuk mencari invers fungsi berikut.
a. $\quad f(x)=\frac{2 x+3}{4 x-5}$
b. $f(x)=\frac{2 x-3}{3 x-2}$
c. $f(x)=\frac{2 x-3}{4 x-2}$
d. $g(x)=\frac{4 x-2}{3+5 x}$
e. $g(x)=\frac{2}{3-x}$
f. $\quad g(x)=\frac{2 x}{3 x+5}$
3. Tentukan $f^{-1}(x)$ kemudian tentukan daerah hasilnya.
a. $\quad f(x)=x^{2}-9$
b. $f(x)=-x^{2}-6 x$
c. $f(x)=\frac{1}{4} x^{2}-\frac{5}{4} x=1$
4. Fungsi f didefinisikan pada \boldsymbol{R} dengan $f(x)=\frac{2 x+3}{x-4}, x \neq-4$.
a. Tentukan rumus f^{-1}.
b. Tentukan pula $\left(f^{-1}\right)^{-1}$.

Kesimpulan apa yang kalian dapatkan?
5. Tentukanlah fungsi f pada R dengan menggunakan jawaban soal nomor 4 jika diketahui berikut ini.
a. $f^{-1}(x)=x+2$
b. $f^{-1}(x)=2 x-5$
c. $f^{-1}(x)=1-\frac{1}{2} x$
d. $f^{-1}(x)=\sqrt[3]{x+3}$
e. $f^{-1}(x)=\frac{x-1}{2 x+3}, x \neq-\frac{3}{2}$
6. Diketahui f dan g adalah fungsi pada A dengan $A=\{x \mid x>0, x \in \boldsymbol{R}\}$ yang ditentukan oleh $f(x)=x+3$ dan $g(x)=\frac{3}{x}$.
Carilah:
a. $\quad(g \circ f)^{-1}(3)$
b. $\quad\left(f^{-1} \circ g^{-1}\right)(3)$
c. $\quad(f \circ g)^{-1}(3)$
d. $\quad\left(g^{-1} \circ f^{-1}\right)(3)$

Kesimpulan apa yang kalian peroleh?
a. Jumlah dua fungsi $f+g: x \rightarrow f(x)+g(x)$
b. Selisih dua fungsi $f-g: x \rightarrow f(x)-g(x)$
c. Perkalian dua fungsi $f \times g: x \rightarrow f(x) \times g(x)$
d. Pembagian dua fungsi $\frac{f}{g}: x \rightarrow \frac{f(x)}{g(x)}$

Sebaiknya Anda Coba

Suatu $A \rightarrow R$ didefinisikan sebagai berikut.

$$
f(1)=1 ; f(2)=2 ; f(3)=3 ; \operatorname{dan} f(n)=\frac{f(n-1)+f(n-2)+1}{f(n-3)} \text { untuk } n \geq 4 .
$$

Tentukan nilai dari $f(2004)$.

Petunjuk

a. Hitunglah $f(4), f(5), f(6)$ sampai $f(16)$ dan selidiki pola apakah yang terjadi.
b. Jika belum jelas lanjutkan penelitian sampai $f(24)$.
c. Carilah rumusan umum dari penelitian kalian.
d. Titik terang untuk menjawab pertanyaan pasti sudah ada.

$\mathbf{R e f l e k s i}^{\text {en }}$

Menurut kalian, apakah manfaat nyata yang kalian rasakan setelah mempelajari bab ini?

U ji Kompetensi

Pilihlah jawaban yang paling benar dengan cara memberi tanda silang (X) pada huruf a, b, c, d, atau e.

1. Bila D_{f} menyatakan daerah asal dan R_{f} daerah hasil fungsi $y=\sqrt{x-1}$, maka ..
a. $D_{f}=\{x \mid x \in R\}, R_{f}=\{y \mid y \in R\}$
b. $D_{f}=\{x \mid x \in R, x>0\}, R_{f}=\{y \mid y \in R, y>0\}$
c. $D_{f}=\{x \mid x \in R, x>1\}, R_{f}=\{y \mid y \in R\}$
d. $D_{f}=\{x \mid x \in R, x \geq 1\}, R_{f}=\{y \mid y \in R, y \geq 0\}$
e. $D_{f}=\{x \mid x \in R, \geq 0\}, R_{f}=\{y \mid y \in R, y \geq 0\}$
2. Diketahui $f(x)=-x+3$, maka $f\left(x^{2}\right)+[f(x)]^{2}-2 f(x)$ adalah
a. $2 x^{2}-6 x+4$
b. $6 x+4$
c. $2 x^{2}+4 x+6$
d. $-4 x+6$
e. $2 x^{2}-4 x-6$
3. Diketahui $f(x)=x^{2}-2$ dan $g(x)=2 x+1$, maka komposisi $f(g(x))$ adalah
a. $4 x^{2}-2$
b. $2 x^{2}-3$
c. $x^{2}+2 x-1$
d. $4 x^{2}+4 x-1$
e. $4 x^{2}+4 x+1$
4. Diketahui $f(x)=x^{2}+4$ dan $g(y)=\frac{2}{\sqrt{y}}$, maka $(g \circ f)(t)$ adalah \ldots.
a. $\frac{4+4 t}{t}$
b. $\frac{2+2 t}{t}$
c. $\frac{2+t}{t}$
d. $\frac{2}{t+2}$
e. $\frac{2}{\sqrt{t^{2}+4}}$
5. Diketahui fungsi-fungsi:
$f(x)=2 x, g(x)=x^{2}-1$, dan $h(x)=x^{2}-1$. Komposisi fungsi di bawah ini yang benar adalah
a. $(f \circ g)(x)=2 x^{2}-1$
b. $(g \circ f)(x)=4 x^{2}-1$
c. $(f \circ h)(x)=4 x$
d. $(h \circ f)(x)=4^{2 x}$
e. $(h \circ g)(x)=2 x^{2}-1$
6. Jika $f(x)=5^{x}$ dan $g(x)=x^{2}+3$ untuk $x \neq 0$, maka $f^{-1}\left(g\left(x^{2}\right)-3\right)$ adalah
a. ${ }^{5} \log \left(x^{2}+3\right)$
b. ${ }^{5} \log \left(x^{4}-3\right)$
c. ${ }^{5} \log \left(x^{4}+3\right)$
d. $4{ }^{5} \log x$
e. $2{ }^{5} \log x$
7. Jika fungsi $f: \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $f(x)=x^{3}$ dan $g(x)=3 x-4$, maka $\left(g^{-1} \circ f^{-1}\right)(8)$ adalah
a. 1
d. $4 \frac{2}{3}$
b. 2
e $5 \frac{1}{3}$
c. $3 \frac{1}{3}$
8. Jika ditentukan $f(x)=\frac{4 x+1}{x-4}$ dengan $x \in R$ dan $x \neq 4$, maka fungsi invers $f^{-1}(x)$ adalah
a. $\frac{x+4}{4 x-1}$
b. $\frac{x-4}{4 x+1}$
c. $\frac{4 x-1}{x+4}$
d. $\frac{4 x+1}{x-4}$
e. $\frac{4 x-1}{x-4}$
9. Diketahui $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ yang ditentukan oleh $f(x+2)=\frac{x+3}{x-1}, x \neq 1$, maka $f^{-1}(x)$ adalah \ldots.
a. $\frac{x+1}{x-3}, x \neq 3$
b. $\frac{x-3}{x+1}, x \neq-1$
c. $\frac{5-x}{x-1}, x \neq 1$
d. $\frac{3 x-1}{x+1}, x \neq-1$
e. $\frac{3 x+1}{x-1}, x \neq 1$
10. Nilai fungsi invers $f^{-1}(2)$ dari $f(x)=\frac{3 x+4}{2 x-1}, x \neq \frac{1}{2}$ adalah
a. 6
b. $3 \frac{1}{3}$
c. 2
d. $\frac{6}{7}$
e. $\frac{2}{7}$
11. Diketahui fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ ditentukan oleh $f(x)=2 x-3$ dan $g(x)=x^{2}+2 x-3$.
Nilai dari $(f \circ g)(2)$ adalah
a. 0
b. 1
c. 7
d. 8
e. 11
12. Jika $f(x)=2 x$ dan $f(g(x))=-\frac{x}{2}+1$, maka $g(x)$ adalah
a. $\frac{x}{2}-1$
b. $\frac{x}{2}+1$
c. $\frac{1}{4}(-x+2)$
d. $\frac{1}{4}(x-2)$
e. $\frac{1}{4}(-x-2)$
13. Dari fungsi $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ dan $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$ diketahui bahwa $f(x)=x+3$ dan $(f \circ g)(x)=x^{2}+7$, maka $g(x)$ adalah \ldots
a. $x^{2}+6 x-4$
b. $x^{2}+3 x-2$
c. $x^{2}-6 x+4$
d. $x^{2}+6 x+4$
e. $x^{2}-3 x+2$
14. Diketahui $A=\{x \mid x<-1\}, B$ dan C himpunan bilangan real. $f: A \rightarrow B$, dengan $f(x)=-x+b, g: B \rightarrow C$, dengan $g(x)=x^{2}$, dan $h=g_{\circ} f: A \rightarrow C$. Bila x di A dipetakan ke 64 di C, maka x adalah
a. 7
b. 8
d. -9
e. -7
15. Bila $f(x)=\frac{x+2}{3-x}$, dengan $x \neq 3$, maka invers dari $f(x)$ yaitu $f^{-1}(x)$ adalah ...
a. $\frac{3-x}{x+2}$, dengan $x \neq-2$
b. $\frac{x+2}{3-x}$, dengan $x \neq 3$
c. $\frac{3 x-2}{x-1}$, dengan $x \neq 1$
d. $\frac{x-2}{x-3}$, dengan $x \neq 3$
e. $\frac{3 x-2}{x+1}$, dengan $x \neq-1$
16. Diketahui $f(x)=x+2$ untuk $x>0$ dan $g(x)=\frac{15}{x}$ untuk $x>0$. Dengan demikian $\left(f^{-1} \circ g^{-1}\right)(x)=1$ dipenuhi untuk x adalah \ldots.
a. 1
b. 3
c. 5
d. 8
e. 10
17. Diketahui $f(x)=x+1$ dan $(f \circ g)(x)=3 x^{2}+4$. Maka $g(x)$ adalah \ldots.
a. $3 x+4$
b. $3 x+3$
c. $3 x^{2}+4$
d. $3\left(x^{2}+1\right)$
e. $3\left(x^{2}+3\right)$
18. Fungsi f pada himpunan bilangan real \boldsymbol{R} didefinisikan sebagai berikut.
$f(x)=\left\{\begin{array}{l}3 x-1, \text { jika } x>3 \\ x^{2}-2, \text { jika }-2 \leq x \leq 3 \\ 2 x+3, \text { jika } x<-2\end{array}\right.$
(1) $f(2)=2$
(3) $f(-1)=-1$
(2) $f(4)=11$
(4) $f(-3)=3$

Pernyataan yang benar adalah
a. (1), (2), dan (3)
d. (4)
b. (1) dan (3)
e. (1), (2), (3), dan (4)
c. (2) dan (4)
19. Fungsi $f(x)=\sqrt{\frac{x^{2}-2 x+1}{16-x^{2}}}$ terdefinisikan untuk x yang memenuhi
a. $-x<x<4$
b. $x<-1$ atau $x>1$
c. $-1<x<1$
d. $x<-4$ atau $x>4$
e. $-4<x<4$
20. Grafik berikut yang dapat merupakan fungsi $x=f(y)$ adalah
(1)

(3)
(4)

d. (4)
a. (1), (2), dan (3)
e. (1), (2), (3), dan (4)
b. (1) dan (3)
c. (2) dan (4)

